Selasa, 29 Oktober 2013
Minggu, 06 Oktober 2013
dapat diartikan sebagai gerak pergeseran suatu benda dengan bentuk dan
lintasan yang sama. Di sini kita akan membahas gerak translasi dengan
menggunakan vektor dalam tinjauan dua dimensi x dan y. Untuk memahami
penjelasan di bawah tentang gerak translasi kita membutuhkan kemapuan
matematika diferensial dan integral serta memhami dengan baik makna dari
diferensial dan integral.
1. Perpindahan dan Jarak
Kalian sering mendengar atau mengucapkan kata bergerak. Apa sebenarnya arti bergerak dalam ilmu fisika? Apakah kalian sudah mengerti? Benda dikatakan bergerak jika mengetahui perubahan posisi atau kedudukan. Coba kalian perhatikan gambar berikut ini.
Posisi atau kedudukan titik A dan titik B dapat dituliskan sebagai vektor dua dirumuskan sebagai berikut.
r = xi + yj …………………………… (1.1)
Partikel dari titik A pindah ke titik B maka partikel tersebut dikatakan telah bergerak dan perpindahannya memenuhi persamaan berikut.
Δr = rB − rA atau Δr = Δxi + Δyj …………………………… (1.2)
Jarak tempuh
Perpindahan partikel pada Gambar di atas digambarkan sebagai vektor dari A ke B yaitu vektor Δr. Bagaimana dengan jarak tempuhnya? Jarak tempuh partikel adalah panjang lintasan yang dilakukan partikel selama bergerak.
2. Kecepatan dan Laju
Setiap benda yang bergerak selalu mengalami perpindahan. Perpindahan yang terjadi tiap satu satuan waktunya diukur dengan besaran yang dinamakan kecepatan. Di kelas X kalian telah belajar tentang kecepatan. Apakah masih ingat? Coba kalian perhatikan penjelasan berikut.
a. Kecepatan dan kelajuan rata-rata
Jika kita naik mobil atau sepeda motor, kecepatannya tidaklah tetap. Kadang bisa cepat dan kadang lambat, bahkan saat lampu merah harus berhenti. Pada gerak dari awal hingga akhir dapat diperoleh suatu kecepatan yang dinamakan kecepatan rata-rata dan didefinisikan sebagai perpindahan tiap satu satuan waktu. Perumusannya sebagai berikut.
…………………………… (1.3)
Laju rata-rata. Bagaimana dengan laju rata-rata? Kecepatan adalah besaran vektor maka berkaitan dengan perpindahan. Tetapi laju merupakan besaran skalar maka harus berkaitan dengan jarak tempuh. Sehingga laju ratarata didefinisikan sebagai jarak tempuh yang terjadi tiap satu satuan waktu.
…………………………… (1.4)
b. Kecepatan dan kelajuan sesaat
Kalian tentu masih ingat di kelas X tentang kecepatan sesaat. Kecepatan sesaat merupakan kecepatan yang terjadi pada saat itu saja. Contohnya pada saat lampu merah kecepatan mobil sebesar nol, kemudian saat lampu hijau mobil tersebut diberikan kecepatan 20 km/jam ke utara.
Secara matematik kecepatan sesaat ini dapat dirumuskan sebagai deferensial atau turunan fungsi yaitu fungsi posisi. Jadi kecepatan sesaat adalah deferensial dari posisinya.
…………………………… (1.5)
Sedangkan laju sesaat dapat ditentukan sama dengan besar kecepatan sesaat. Laju sesaat inilah yang dapat diukur dengan alat yang dinamakan speedometer.
Sudah tahukah kalian dengan deferensial fungsi itu? Tentu saja sudah. Besaran posisi atau kecepatan biasanya memenuhi fungsi waktu. Deferensial fungsi waktu tersebut dapat memenuhi persamaan berikut.
Jika
maka …………………………… (1.6)
Pada gerak dua dimensi, persamaan 1.5 dan 1.6 dapat dijelaskan dengan contoh gerak perahu seperti pada berikut ini.
Secara vektor, kecepatan perahu dapat diuraikan dalam dua arah menjadi vx dan vy. Posisi tiap saat memenuhi P(x,y). Berarti posisi erahu atau benda dapat memenuhi persamaan 1.1. dari persamaan itu dapat diturunkan persamaan kecepatan arah sumbu x dan sumbu y sebagai berikut.
r = xi + yj
…………………………… (1.7)
Jadi proyeksi kecepatannya memenuhi :
Besar kecepatan sesaat, secara vektor dapat memenuhi dalil Pythagoras. Kalian tentu dapat merumuskan persamaan besar kecepatan tersebut. Perhatikan persamaan 1.7. Dari persamaan itu dapat kalian peroleh :
……………………. (1.8)
c. Posisi dan kecepatan
Jika kecepatan sesaat dapat ditentukan dengan deferensial posisi maka secara matematis posisi dapat ditentukan dari integral kecepatan sesaatnya. Integral ini dapat dirumuskan sebagai berikut.
…………………………. (1.9)
Definisi integral secara mendetail dapat kalian pelajari di mata pelajaran Matematika. Untuk mata pelajaran Fisika kelas XI ini dikenalkan untuk fungsi tn Perhatikan persamaan berikut
………………………. (1.10)
3. Percepatan
a. Nilai rata-rata dan sesaat
Sesuai dengan kecepatan, percepatan juga memiliki dua nilai. Percepatan rata-rata didefinisikan sebagai perubahan kecepatan tiap satu satuan waktu.
………………………. (1.11)
Sedangkan percepatan sesaat dapat ditentukan dengan deferensial dari kecepatan sesaatnya.
………………………. (1.12)
b. Kecepatan dan percepatan
Jika percepatan sesaat dapat ditentukan dengan deferensial dari kecepatan sesaat maka sebaliknya berlaku integral berikut.
………………………. (1.13)
1. Perpindahan dan Jarak
Kalian sering mendengar atau mengucapkan kata bergerak. Apa sebenarnya arti bergerak dalam ilmu fisika? Apakah kalian sudah mengerti? Benda dikatakan bergerak jika mengetahui perubahan posisi atau kedudukan. Coba kalian perhatikan gambar berikut ini.
Posisi atau kedudukan titik A dan titik B dapat dituliskan sebagai vektor dua dirumuskan sebagai berikut.
r = xi + yj …………………………… (1.1)
Partikel dari titik A pindah ke titik B maka partikel tersebut dikatakan telah bergerak dan perpindahannya memenuhi persamaan berikut.
Δr = rB − rA atau Δr = Δxi + Δyj …………………………… (1.2)
Jarak tempuh
Perpindahan partikel pada Gambar di atas digambarkan sebagai vektor dari A ke B yaitu vektor Δr. Bagaimana dengan jarak tempuhnya? Jarak tempuh partikel adalah panjang lintasan yang dilakukan partikel selama bergerak.
2. Kecepatan dan Laju
Setiap benda yang bergerak selalu mengalami perpindahan. Perpindahan yang terjadi tiap satu satuan waktunya diukur dengan besaran yang dinamakan kecepatan. Di kelas X kalian telah belajar tentang kecepatan. Apakah masih ingat? Coba kalian perhatikan penjelasan berikut.
a. Kecepatan dan kelajuan rata-rata
Jika kita naik mobil atau sepeda motor, kecepatannya tidaklah tetap. Kadang bisa cepat dan kadang lambat, bahkan saat lampu merah harus berhenti. Pada gerak dari awal hingga akhir dapat diperoleh suatu kecepatan yang dinamakan kecepatan rata-rata dan didefinisikan sebagai perpindahan tiap satu satuan waktu. Perumusannya sebagai berikut.
…………………………… (1.3)
Laju rata-rata. Bagaimana dengan laju rata-rata? Kecepatan adalah besaran vektor maka berkaitan dengan perpindahan. Tetapi laju merupakan besaran skalar maka harus berkaitan dengan jarak tempuh. Sehingga laju ratarata didefinisikan sebagai jarak tempuh yang terjadi tiap satu satuan waktu.
…………………………… (1.4)
b. Kecepatan dan kelajuan sesaat
Kalian tentu masih ingat di kelas X tentang kecepatan sesaat. Kecepatan sesaat merupakan kecepatan yang terjadi pada saat itu saja. Contohnya pada saat lampu merah kecepatan mobil sebesar nol, kemudian saat lampu hijau mobil tersebut diberikan kecepatan 20 km/jam ke utara.
Secara matematik kecepatan sesaat ini dapat dirumuskan sebagai deferensial atau turunan fungsi yaitu fungsi posisi. Jadi kecepatan sesaat adalah deferensial dari posisinya.
…………………………… (1.5)
Sedangkan laju sesaat dapat ditentukan sama dengan besar kecepatan sesaat. Laju sesaat inilah yang dapat diukur dengan alat yang dinamakan speedometer.
Sudah tahukah kalian dengan deferensial fungsi itu? Tentu saja sudah. Besaran posisi atau kecepatan biasanya memenuhi fungsi waktu. Deferensial fungsi waktu tersebut dapat memenuhi persamaan berikut.
Jika
maka …………………………… (1.6)
Pada gerak dua dimensi, persamaan 1.5 dan 1.6 dapat dijelaskan dengan contoh gerak perahu seperti pada berikut ini.
Secara vektor, kecepatan perahu dapat diuraikan dalam dua arah menjadi vx dan vy. Posisi tiap saat memenuhi P(x,y). Berarti posisi erahu atau benda dapat memenuhi persamaan 1.1. dari persamaan itu dapat diturunkan persamaan kecepatan arah sumbu x dan sumbu y sebagai berikut.
r = xi + yj
…………………………… (1.7)
Jadi proyeksi kecepatannya memenuhi :
Besar kecepatan sesaat, secara vektor dapat memenuhi dalil Pythagoras. Kalian tentu dapat merumuskan persamaan besar kecepatan tersebut. Perhatikan persamaan 1.7. Dari persamaan itu dapat kalian peroleh :
……………………. (1.8)
c. Posisi dan kecepatan
Jika kecepatan sesaat dapat ditentukan dengan deferensial posisi maka secara matematis posisi dapat ditentukan dari integral kecepatan sesaatnya. Integral ini dapat dirumuskan sebagai berikut.
…………………………. (1.9)
Definisi integral secara mendetail dapat kalian pelajari di mata pelajaran Matematika. Untuk mata pelajaran Fisika kelas XI ini dikenalkan untuk fungsi tn Perhatikan persamaan berikut
………………………. (1.10)
3. Percepatan
a. Nilai rata-rata dan sesaat
Sesuai dengan kecepatan, percepatan juga memiliki dua nilai. Percepatan rata-rata didefinisikan sebagai perubahan kecepatan tiap satu satuan waktu.
………………………. (1.11)
Sedangkan percepatan sesaat dapat ditentukan dengan deferensial dari kecepatan sesaatnya.
………………………. (1.12)
b. Kecepatan dan percepatan
Jika percepatan sesaat dapat ditentukan dengan deferensial dari kecepatan sesaat maka sebaliknya berlaku integral berikut.
………………………. (1.13)
07.16
Smartvone
dapat diartikan sebagai gerak pergeseran suatu benda dengan bentuk dan
lintasan yang sama. Di sini kita akan membahas gerak translasi dengan
menggunakan vektor dalam tinjauan dua dimensi x dan y. Untuk memahami
penjelasan di bawah tentang gerak translasi kita membutuhkan kemapuan
matematika diferensial dan integral serta memhami dengan baik makna dari
diferensial dan integral.
1. Perpindahan dan Jarak
Kalian sering mendengar atau mengucapkan kata bergerak. Apa sebenarnya arti bergerak dalam ilmu fisika? Apakah kalian sudah mengerti? Benda dikatakan bergerak jika mengetahui perubahan posisi atau kedudukan. Coba kalian perhatikan gambar berikut ini.
Posisi atau kedudukan titik A dan titik B dapat dituliskan sebagai vektor dua dirumuskan sebagai berikut.
r = xi + yj …………………………… (1.1)
Partikel dari titik A pindah ke titik B maka partikel tersebut dikatakan telah bergerak dan perpindahannya memenuhi persamaan berikut.
Δr = rB − rA atau Δr = Δxi + Δyj …………………………… (1.2)
Jarak tempuh
Perpindahan partikel pada Gambar di atas digambarkan sebagai vektor dari A ke B yaitu vektor Δr. Bagaimana dengan jarak tempuhnya? Jarak tempuh partikel adalah panjang lintasan yang dilakukan partikel selama bergerak.
2. Kecepatan dan Laju
Setiap benda yang bergerak selalu mengalami perpindahan. Perpindahan yang terjadi tiap satu satuan waktunya diukur dengan besaran yang dinamakan kecepatan. Di kelas X kalian telah belajar tentang kecepatan. Apakah masih ingat? Coba kalian perhatikan penjelasan berikut.
a. Kecepatan dan kelajuan rata-rata
Jika kita naik mobil atau sepeda motor, kecepatannya tidaklah tetap. Kadang bisa cepat dan kadang lambat, bahkan saat lampu merah harus berhenti. Pada gerak dari awal hingga akhir dapat diperoleh suatu kecepatan yang dinamakan kecepatan rata-rata dan didefinisikan sebagai perpindahan tiap satu satuan waktu. Perumusannya sebagai berikut.
…………………………… (1.3)
Laju rata-rata. Bagaimana dengan laju rata-rata? Kecepatan adalah besaran vektor maka berkaitan dengan perpindahan. Tetapi laju merupakan besaran skalar maka harus berkaitan dengan jarak tempuh. Sehingga laju ratarata didefinisikan sebagai jarak tempuh yang terjadi tiap satu satuan waktu.
…………………………… (1.4)
b. Kecepatan dan kelajuan sesaat
Kalian tentu masih ingat di kelas X tentang kecepatan sesaat. Kecepatan sesaat merupakan kecepatan yang terjadi pada saat itu saja. Contohnya pada saat lampu merah kecepatan mobil sebesar nol, kemudian saat lampu hijau mobil tersebut diberikan kecepatan 20 km/jam ke utara.
Secara matematik kecepatan sesaat ini dapat dirumuskan sebagai deferensial atau turunan fungsi yaitu fungsi posisi. Jadi kecepatan sesaat adalah deferensial dari posisinya.
…………………………… (1.5)
Sedangkan laju sesaat dapat ditentukan sama dengan besar kecepatan sesaat. Laju sesaat inilah yang dapat diukur dengan alat yang dinamakan speedometer.
Sudah tahukah kalian dengan deferensial fungsi itu? Tentu saja sudah. Besaran posisi atau kecepatan biasanya memenuhi fungsi waktu. Deferensial fungsi waktu tersebut dapat memenuhi persamaan berikut.
Jika
maka …………………………… (1.6)
Pada gerak dua dimensi, persamaan 1.5 dan 1.6 dapat dijelaskan dengan contoh gerak perahu seperti pada berikut ini.
Secara vektor, kecepatan perahu dapat diuraikan dalam dua arah menjadi vx dan vy. Posisi tiap saat memenuhi P(x,y). Berarti posisi erahu atau benda dapat memenuhi persamaan 1.1. dari persamaan itu dapat diturunkan persamaan kecepatan arah sumbu x dan sumbu y sebagai berikut.
r = xi + yj
…………………………… (1.7)
Jadi proyeksi kecepatannya memenuhi :
Besar kecepatan sesaat, secara vektor dapat memenuhi dalil Pythagoras. Kalian tentu dapat merumuskan persamaan besar kecepatan tersebut. Perhatikan persamaan 1.7. Dari persamaan itu dapat kalian peroleh :
……………………. (1.8)
c. Posisi dan kecepatan
Jika kecepatan sesaat dapat ditentukan dengan deferensial posisi maka secara matematis posisi dapat ditentukan dari integral kecepatan sesaatnya. Integral ini dapat dirumuskan sebagai berikut.
…………………………. (1.9)
Definisi integral secara mendetail dapat kalian pelajari di mata pelajaran Matematika. Untuk mata pelajaran Fisika kelas XI ini dikenalkan untuk fungsi tn Perhatikan persamaan berikut
………………………. (1.10)
3. Percepatan
a. Nilai rata-rata dan sesaat
Sesuai dengan kecepatan, percepatan juga memiliki dua nilai. Percepatan rata-rata didefinisikan sebagai perubahan kecepatan tiap satu satuan waktu.
………………………. (1.11)
Sedangkan percepatan sesaat dapat ditentukan dengan deferensial dari kecepatan sesaatnya.
………………………. (1.12)
b. Kecepatan dan percepatan
Jika percepatan sesaat dapat ditentukan dengan deferensial dari kecepatan sesaat maka sebaliknya berlaku integral berikut.
………………………. (1.13)
1. Perpindahan dan Jarak
Kalian sering mendengar atau mengucapkan kata bergerak. Apa sebenarnya arti bergerak dalam ilmu fisika? Apakah kalian sudah mengerti? Benda dikatakan bergerak jika mengetahui perubahan posisi atau kedudukan. Coba kalian perhatikan gambar berikut ini.
Posisi atau kedudukan titik A dan titik B dapat dituliskan sebagai vektor dua dirumuskan sebagai berikut.
r = xi + yj …………………………… (1.1)
Partikel dari titik A pindah ke titik B maka partikel tersebut dikatakan telah bergerak dan perpindahannya memenuhi persamaan berikut.
Δr = rB − rA atau Δr = Δxi + Δyj …………………………… (1.2)
Jarak tempuh
Perpindahan partikel pada Gambar di atas digambarkan sebagai vektor dari A ke B yaitu vektor Δr. Bagaimana dengan jarak tempuhnya? Jarak tempuh partikel adalah panjang lintasan yang dilakukan partikel selama bergerak.
2. Kecepatan dan Laju
Setiap benda yang bergerak selalu mengalami perpindahan. Perpindahan yang terjadi tiap satu satuan waktunya diukur dengan besaran yang dinamakan kecepatan. Di kelas X kalian telah belajar tentang kecepatan. Apakah masih ingat? Coba kalian perhatikan penjelasan berikut.
a. Kecepatan dan kelajuan rata-rata
Jika kita naik mobil atau sepeda motor, kecepatannya tidaklah tetap. Kadang bisa cepat dan kadang lambat, bahkan saat lampu merah harus berhenti. Pada gerak dari awal hingga akhir dapat diperoleh suatu kecepatan yang dinamakan kecepatan rata-rata dan didefinisikan sebagai perpindahan tiap satu satuan waktu. Perumusannya sebagai berikut.
…………………………… (1.3)
Laju rata-rata. Bagaimana dengan laju rata-rata? Kecepatan adalah besaran vektor maka berkaitan dengan perpindahan. Tetapi laju merupakan besaran skalar maka harus berkaitan dengan jarak tempuh. Sehingga laju ratarata didefinisikan sebagai jarak tempuh yang terjadi tiap satu satuan waktu.
…………………………… (1.4)
b. Kecepatan dan kelajuan sesaat
Kalian tentu masih ingat di kelas X tentang kecepatan sesaat. Kecepatan sesaat merupakan kecepatan yang terjadi pada saat itu saja. Contohnya pada saat lampu merah kecepatan mobil sebesar nol, kemudian saat lampu hijau mobil tersebut diberikan kecepatan 20 km/jam ke utara.
Secara matematik kecepatan sesaat ini dapat dirumuskan sebagai deferensial atau turunan fungsi yaitu fungsi posisi. Jadi kecepatan sesaat adalah deferensial dari posisinya.
…………………………… (1.5)
Sedangkan laju sesaat dapat ditentukan sama dengan besar kecepatan sesaat. Laju sesaat inilah yang dapat diukur dengan alat yang dinamakan speedometer.
Sudah tahukah kalian dengan deferensial fungsi itu? Tentu saja sudah. Besaran posisi atau kecepatan biasanya memenuhi fungsi waktu. Deferensial fungsi waktu tersebut dapat memenuhi persamaan berikut.
Jika
maka …………………………… (1.6)
Pada gerak dua dimensi, persamaan 1.5 dan 1.6 dapat dijelaskan dengan contoh gerak perahu seperti pada berikut ini.
Secara vektor, kecepatan perahu dapat diuraikan dalam dua arah menjadi vx dan vy. Posisi tiap saat memenuhi P(x,y). Berarti posisi erahu atau benda dapat memenuhi persamaan 1.1. dari persamaan itu dapat diturunkan persamaan kecepatan arah sumbu x dan sumbu y sebagai berikut.
r = xi + yj
…………………………… (1.7)
Jadi proyeksi kecepatannya memenuhi :
Besar kecepatan sesaat, secara vektor dapat memenuhi dalil Pythagoras. Kalian tentu dapat merumuskan persamaan besar kecepatan tersebut. Perhatikan persamaan 1.7. Dari persamaan itu dapat kalian peroleh :
……………………. (1.8)
c. Posisi dan kecepatan
Jika kecepatan sesaat dapat ditentukan dengan deferensial posisi maka secara matematis posisi dapat ditentukan dari integral kecepatan sesaatnya. Integral ini dapat dirumuskan sebagai berikut.
…………………………. (1.9)
Definisi integral secara mendetail dapat kalian pelajari di mata pelajaran Matematika. Untuk mata pelajaran Fisika kelas XI ini dikenalkan untuk fungsi tn Perhatikan persamaan berikut
………………………. (1.10)
3. Percepatan
a. Nilai rata-rata dan sesaat
Sesuai dengan kecepatan, percepatan juga memiliki dua nilai. Percepatan rata-rata didefinisikan sebagai perubahan kecepatan tiap satu satuan waktu.
………………………. (1.11)
Sedangkan percepatan sesaat dapat ditentukan dengan deferensial dari kecepatan sesaatnya.
………………………. (1.12)
b. Kecepatan dan percepatan
Jika percepatan sesaat dapat ditentukan dengan deferensial dari kecepatan sesaat maka sebaliknya berlaku integral berikut.
………………………. (1.13)
A. Konsep Dasar
Termokimia adalah ilmu yang mempelajari hubungan
antara energi panas dan energi kimia. Sedangkan energi kimia didefinisikan
sebagai energi yang dikandung setiap unsur atau senyawa. Energi kimia yang
terkandung dalam suatu zat adalah semacam energi potensial zat tersebut. Energi
potensial kimia yang terkandung dalam suatu zat disebut panas dalam atau entalpi dan dinyatakan dengan simbol H.
Selisih antara entalpi reaktan dan entalpi hasil pada suatu reaksi disebut perubahan entalpi reaksi. Perubahan entalpi reaksi diberi simbol ΔH.
Bagian
dari ilmu kimia yang mempelajari perubahan kalor atau panas suatu zat yang
menyertai suatu reaksi atau proses kimia dan fisika disebut termokimia. Secara operasional
termokimia berkaitan dengan pengukuran dan pernafsiran perubahan kalor yang
menyertai reaksi kimia, perubahan keadaan, dan pembentukan larutan.
Fokus
bahasan dalam termokimia adalah tentang jumlah kalor yang dapat dihasilkan oleh
sejumlah tertentu pereaksi serta cara pengukuran kalor reaksi.
Termokimia merupakan penerapan hukum pertama
termodinamika terhadap peristiwa kimia yang membahas tentang kalor yang
menyertai reaksi kimia.
Termodinamika
kimia dapat didefenisikan sebagai cabang kimia yang menangani hubungan kalor,
kerja dan bentuk lain energi, dengan kesetimbangan dalam reaksi kimia dan dalam
perubahan keadaan. Termokimia erat kaitannya dengan termodinamika, karena
termokimia menangani pengukuran dan penafsiran perubahan kalor yang menyertai
reaksi kimia, perubahan keadaan dan pembentukan larutan. Termodinamika
merupakan ilmu tentang energi, yang secara spesifik membahas tentang hubungan
antara energi panas dengan kerja.
Penerapan
hukum termodinamika pertama dalam bidang kimia merupakan bahan kajian dari
termokimia.” Energi tidak dapat diciptakan atau dimusnahkan, tetapi dapat
diubah dari satu bentuk ke bentuk yang lain, atau energi alam semesta adalah
konstan.” hukum termodinamika 1
Perubahan kalor pada
tekanan konstan:
∆H = ∆E + P∆V
W= P∆V
∆E = energi dalam
Hukum pertama termodinamika
dapat dirumuskan sbg
∆U = Q – W
∆U = perubahan tenaga dalam
sistem
Q = panas yang masuk/keluar
dari sistem
W = Usaha yang dilakukan
thp sistem
06.27
Smartvone
A. Konsep Dasar
Termokimia adalah ilmu yang mempelajari hubungan
antara energi panas dan energi kimia. Sedangkan energi kimia didefinisikan
sebagai energi yang dikandung setiap unsur atau senyawa. Energi kimia yang
terkandung dalam suatu zat adalah semacam energi potensial zat tersebut. Energi
potensial kimia yang terkandung dalam suatu zat disebut panas dalam atau entalpi dan dinyatakan dengan simbol H.
Selisih antara entalpi reaktan dan entalpi hasil pada suatu reaksi disebut perubahan entalpi reaksi. Perubahan entalpi reaksi diberi simbol ΔH.
Bagian
dari ilmu kimia yang mempelajari perubahan kalor atau panas suatu zat yang
menyertai suatu reaksi atau proses kimia dan fisika disebut termokimia. Secara operasional
termokimia berkaitan dengan pengukuran dan pernafsiran perubahan kalor yang
menyertai reaksi kimia, perubahan keadaan, dan pembentukan larutan.
Fokus
bahasan dalam termokimia adalah tentang jumlah kalor yang dapat dihasilkan oleh
sejumlah tertentu pereaksi serta cara pengukuran kalor reaksi.
Termokimia merupakan penerapan hukum pertama
termodinamika terhadap peristiwa kimia yang membahas tentang kalor yang
menyertai reaksi kimia.
Termodinamika
kimia dapat didefenisikan sebagai cabang kimia yang menangani hubungan kalor,
kerja dan bentuk lain energi, dengan kesetimbangan dalam reaksi kimia dan dalam
perubahan keadaan. Termokimia erat kaitannya dengan termodinamika, karena
termokimia menangani pengukuran dan penafsiran perubahan kalor yang menyertai
reaksi kimia, perubahan keadaan dan pembentukan larutan. Termodinamika
merupakan ilmu tentang energi, yang secara spesifik membahas tentang hubungan
antara energi panas dengan kerja.
Penerapan
hukum termodinamika pertama dalam bidang kimia merupakan bahan kajian dari
termokimia.” Energi tidak dapat diciptakan atau dimusnahkan, tetapi dapat
diubah dari satu bentuk ke bentuk yang lain, atau energi alam semesta adalah
konstan.” hukum termodinamika 1
Perubahan kalor pada
tekanan konstan:
∆H = ∆E + P∆V
W= P∆V
∆E = energi dalam
Hukum pertama termodinamika
dapat dirumuskan sbg
∆U = Q – W
∆U = perubahan tenaga dalam
sistem
Q = panas yang masuk/keluar
dari sistem
W = Usaha yang dilakukan
thp sistem
Langganan:
Postingan (Atom)